小 Y 是一个爱好旅行的 OIer。一天,她来到了一个新的城市。由于不熟悉那里的交通系统,她选择了坐地铁。
她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有换乘站。通过调查得知,没有线路是环线,也没有线路与自身相交。任意两条不同的线路只会在若干个点上相交,没有重合的部分,且没有三线共点的情况。即,如图所示的情况都是不存在的:
小 Y 坐着地铁 000 号线,路上依次经过了 nnn 个换乘站。她记下了每个换乘站可以换乘的线路编号,发现每条线路与她所乘坐的线路最多只有 222 个换乘站。现在小Y想知道,除掉她经过的换乘站以外,这个城市里最少有几个换乘站。只有你告诉她正确的答案,她才会答应下次带你去玩呢。
请注意本题有多组输入数据。
输入数据的第一行是一个整数 TTT,表示输入数据的组数。接下来依次给出每组数据。
对于每组数据,第一行是一个整数 nnn,表示小Y经过的换乘站的数目。第二行为 nnn 个用空格隔开的整数,依次表示每个换乘站的可以换乘的线路编号。这些编号都在 111 ~ nnn 之内。
对于每组输入数据,输出一行一个整数,表示除掉这 nnn 个换乘站之外,最少有几个换乘站。
4 4 1 2 1 2 8 1 2 3 4 1 2 3 4 5 5 4 3 3 5 8 1 2 3 4 1 3 2 4
0 0 0 1
对于样例的前两组数据,一种可能的最优答案如下图所示。
一共有 50 个测试点,每个测试点 2 分。你只有在答案完全正确时才能得到该测试点的全部分数,否则不得分。
对于所有测试点,以及对于样例,1⩽T⩽100,1⩽n⩽441 \leqslant T \leqslant 100, 1 \leqslant n \leqslant 441⩽T⩽100,1⩽n⩽44。对于每个测试点,nnn 的范围如下表: